
Stable hovering architecture for nanoquadcopter 
applications in indoor environments 

Sofia Huștiu, Marian Lupașcu, Ștefan Popescu, Adrian Burlacu, Marius Kloetzer  
Dept. of Automatic Control and Applied Informatics 

“Gheorghe Asachi” Technical University of Iași 
Iași, Romania  

{hustiu.sofia, lupascu.marian, popescu.stefan, aburlacu, kmarius}@ac.tuiasi.ro 
 

Abstract— This research aims at designing a stable hovering 
architecture for small size quadcopters in indoor environments. 
The chosen system is a Crazyflie 2.0 nanoquadcopter. First, using 
the Newton-Euler equations, the dynamic nonlinear model is built. 
This model allows for simulations and feedback controller design. 
Second, a 3D indoor environment was created for real-time 
applications. A Kinect Sensor is considered for real time position 
measurements, at the same time with obtaining orientations from 
the gyroscope of the Crazyflie. For practical implementation, a 
combination between Python and Matlab facilities was considered. 
The first prototype of the proposed architecture was evaluated for 
different scenarios and the experimental results are detailed and 
commented. 

Keywords— nanoquadcopter; modelling; indoor application. 

I.  INTRODUCTION  
Quadcopters are popular choices for robotic platforms, due 

to their agility, simplicity, and wide range of applications. Their 
first appearance was in the military field [1]. The scope of the 
quadcopter technology has changed over the years. Therefore, 
they start to be used in daily application as: delivery services, 
ground mapping, photography and movie making [2]. A 
quadcopter is a four rotor helicopter [3]. The particularity of the 
quadcopter is given by the fact that two opposite propellers spin 
clockwise, and the other two spin counter clockwise. The study 
of the quadcopter control problem is interesting because of its 
complexity: six degrees of freedom [4, 5]. Most commonly used 
quadcopters are big enough to carry cameras or packages to 
deliver [6], but they are expensive and require a large space to 
operate safely.   

One of the current challenges is to integrate quadcopters in 
applications for indoor environments. The reduced space and 
lack of very important measurement such as GPS increases the 
complexity of having a stable hovering. For this research, we 
decided to use small size quadcopters and design a stable 
hovering architecture for indoor applications. 

The chosen type of quadcopters is Crazyflie 2.0 [7-9]. Due 
to small size, it cannot carry any camera or other sensors besides 
the IMU and gyroscope. In order to recover the position a RGB-
D sensor was included in the indoor environment. Thus, the bias 
between the internal IMU data and the external position 
measurements generate the input error needed to be minimized.  

The paper begins with problem formulation, where an 
overview of the system is given. Next, the mathematical model 
for the nanoquadcopter dynamics is presented. The nonlinear 
behavior is modeled using the Newton-Euler approach. Also, 

internal structure of the nanoquadcopter and physical 
constraints are evaluated. For practical applications we present 
details about the protocol communication between PC and 
Crazyflie 2.0, by using Python and Matlab facilities. The 
constructed model and the developed communication routines 
will be used for completing a stabilizing architecture, and the 
current experimental results are discussed in section V. In the 
last section we address conclusions and future work. 

II. PROBLEM FORMULATION 
This research investigates the problem of automatically 

controlling the flight of a Crazyflie 2.0 quadcopter, such that it 
can follow a desired reference trajectory. 

The Crazyflie 2.0 is a nanoquadcopter suitable for indoor 
environments [7]. It weighs less than 30 grams (including 
battery) and its diagonal size is less than 10 centimeters. The 
quadcopter has a 32-bit, 168 MHz ARM microcontroller, an 
internal gyroscope, and it communicates with a PC over the 
Crazyradio PA, which is a 2.4 GHz USB dongle that transmits 
up to two megabits per second in 32-byte packets. Fig. 1 
presents the kit containing a Crazyflie 2.0 quadcopter and a 
Crazyradio PA. 

For obtaining a supervised indoor flight of this quadcopter 
we propose the architecture from Fig. 2, which is comprised of 
the following main parts: 

(i) The quadcopter (plant to be controlled); 
(ii) Software interface with the quadcopter, consisting in 

developing functions for sending commands and reading 
states; 

(iii) Position feedback, i.e. indoor localization, solved by 
processing images with depth information gathered by a 
Kinect sensor [10]; 

            
Fig. 1 Crazyflie 2.0 quadcopter (left) and Crazyradio PA  

communication dongle (right) 
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(iv) Algorithm ensuring the stable flight while following a 
predefined reference trajectory. 

This paper studies items (i), (ii) and (iii) from above. More 
specifically, for item (i) we discuss the quadcopter 
mathematical model and internal structure (Section III), which 
is further used for performing simulations and for finding 
suitable control laws in step (iv). For item (ii) we develop 
functions for establishing connection with Crazyflie 2.0, for 
sending commands and for reading important states – Section 
IV.A. Item (iii) includes functions for reading images and depth 
information from the Kinnect sensor and for detecting the 
quadcopter position in the workspace – Section IV.B. It worth 
mentioning at this point that the software routines for both steps 
(ii) and (iii) are created with the purpose of calling them from 
the Matlab environment. This is because many path planning 
and trajectory following algorithms (embedded in step (iv)) are 
developed under Matlab, and thus we intend to obtain user-
friendly routines for Crazyflie 2.0. Step (iv) is left for future 
work, and thus this paper details the proposed architecture and 
workspace for Crazyflie 2.0 real-time experiments. 

The workspace in which the quadcopter evolves is shown in 
Fig. 3, being constructed such that it allows the usage of the 
architecture from Fig. 2. Starting from a platform that was 
previously used for controlling planar mobile robots [11], we 
have added a Kinect sensor and a safety net, while 3D obstacles 
for further tests in step (iv) can be represented by polystyrene 
shapes. The working environment footprint is about 4 x 2.5 m, 
and the height is almost 2.8 m. From this height, the Kinect 
sensor can cover slightly more than the whole footprint, and an 
area of about 2.1 x 1.3 m at height of 1 m. 

III. CRAZYFLIE 2.0 MODEL AND STRUCTURE 
Subsection III.A details the mathematical model for the 

Crazyflie 2.0, while subsection III.B presents its internal 
structure yielding the available inputs and outputs. The 
information from this section summarizes important data from 
the model development and structure given in [12]. 

A. Dynamic Model for Crazyflie 2.0 
To obtain the mathematical model, we consider the 

following hypothesis [13]: 
• The structure is a rigid body; 
• The structure is symmetrical; 

• The Center of Gravity (CoG) is in the middle of the 
quadcopter; 

• The mass is constant. 
It is also necessary to define two frames, as in Fig. 4: the 

body fixed frame in configuration “X”, which is default for 
Crazyflie 2.0, and the inertial frame, denoted as Global inertial 
Frame (GiF), related to the Earth. Initially, the Crazyflie’s body 
fixed frame is deployed in the origin of the GiF. 

The following state variables of the model are chosen, all 
being expressed in the inertial frame: x, y, z denote the position 
of CoG, u, v, w are the linear velocities of CoG along the three 
axes, ϕ, θ, ψ are the roll, pitch, and yaw angles, respectively, 
and p, q, r are the angular velocities of the quadcopter. 

Based on Newton-Euler equations and on the mentioned 
hypothesis, one can obtain the nonlinear model of the Crazyflie 
2.0 quadcopter given by (1). For additional construction details 
see [12], but bear in mind that the model herein corrects some 
small errors. Also, we mention that it is possible to derive 
different quadcopter models as in [8,9], but this work will further 
focus on model (1). 

 
Fig. 2 Proposed architecture for supervised Crazyflie 2.0 experiments 

 
Fig. 3 Working environment  

 
Fig. 4 Inertial frame (left) and body frame (right) 
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 (1) 

In order to simplify notations, model (1) uses notations 𝑠𝑠𝑥𝑥 = 
sin(x), 𝑐𝑐𝑥𝑥= cos(x) and 𝑡𝑡𝑥𝑥 = tg(x). Furthermore, m is the 
Crazyflie’s mass, g denotes the gravitational acceleration, and 
Ixx, Iyy, Izz are the moments of inertia around x, y, z axis, with 
numerical values given in Table I. 

Table I. Crazyflie 2.0 parameters 

Parameter Value 
m 0.0299 [Kg] 
g 9.81 [m/s2] 

𝐼𝐼𝑥𝑥𝑥𝑥  =  𝐼𝐼𝑦𝑦𝑦𝑦 1.395 x 10−5 [Kg x m2] 
𝐼𝐼𝑧𝑧𝑧𝑧 2.173 x 10−5 [Kg x m2] 
𝐶𝐶𝑇𝑇 3.1582 x 10−10 [N/rpm2] 
𝐶𝐶𝐷𝐷 7.9379 x 10−12 [Nm/rpm2] 
d 0.03973 [m] 

The generic inputs for the quadcopter are the total thrust, 
denoted by U1 in (1), and roll, pitch, yaw moments, denoted by 
U2, U3, U4, respectively. Equation (2) links these inputs to the 
speeds of the four motors [14]. In (2), 𝜔𝜔𝑖𝑖, 𝑖𝑖 = 1, … , 4 are the 
rotation speeds of the four DC motors, in rpm (revolutions per 
minute), 𝐶𝐶𝐷𝐷 is the drag coefficient,  𝐶𝐶𝑇𝑇 is the thrust coefficient , 
and the quadcopter’s arm length is denoted by d, with numerical 
values from Table I. 

 

𝑈𝑈1 =  𝐶𝐶𝑇𝑇(𝜔𝜔12 + 𝜔𝜔2
2 + 𝜔𝜔3

2 + 𝜔𝜔42)
𝑈𝑈2 =  𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 − 𝜔𝜔2

2 +  𝜔𝜔3
2 + 𝜔𝜔42)

𝑈𝑈3 =  𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 + 𝜔𝜔2
2 +  𝜔𝜔3

2 − 𝜔𝜔42)
𝑈𝑈4 =  𝐶𝐶𝐷𝐷(−𝜔𝜔12 +  𝜔𝜔2

2 − 𝜔𝜔3
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 (2) 

B. Internal Structure of Crazyflie 2.0 
The Crazyflie 2.0 quadcopter includes some internal 

controllers that cannot be overridden by the user. Thus, the 
inputs of the dynamic model (1), (2) cannot be directly send to 
Crazyflie 2.0, and instead of those, the user can impose the 
following signals: 

• Command thrust 𝛺𝛺𝑐𝑐; 
• Command (desired) roll and pitch angles: ϕc and θc, 

respectively, expressed in degrees; 

• Command yaw rate 𝜓𝜓𝑐̇𝑐, in degrees per second. 
The internal structure of the Crazyflie 2.0 is given in Fig. 5, 

containing the internal controllers and the plant model. 
Command thrust 𝛺𝛺𝑐𝑐 is given as a 16 bit number, ranging from 0 
to 65535. Also, by exploring the Crazyflie’s 2.0 firmware, we 
observe that the internal signals for driving the quadcopter 
(outputs of the “Control mixer” block) are PWM signals for each 
motor, rather than rpm values 𝜔𝜔𝑖𝑖, 𝑖𝑖 = 1, … , 4. The translation 
from PWM to RPM is given in (3). 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  0.2685 × 𝑃𝑃𝑃𝑃𝑃𝑃 + 4070.3 (3) 

Thus, the block “Plant” from Fig. 5 basically corresponds to 
translation (3) and dynamic model (1), (2). Additionally, the 
quadcopter has a gyroscope sensor that returns the current values 
of ϕ, θ, ψ states and ensures internal feedback for the next 
described controllers that came with the stock firmware of the 
Crazyflie 2.0. The “Attitude controller” is a PI controller that 
outputs the desired roll and pitch angular velocities 𝜙𝜙𝑐̇𝑐 and 𝜃𝜃𝑐̇𝑐, 
based on send commands and on actual feedback ϕ and θ. The 
“Rate controller” further computes the necessary angular 
variations Δϕ, Δθ, Δψ to create the angular momentum. The 
outputs from the rate controller are used as inputs in the last 
onboard controller. Along with the thrust 𝛺𝛺𝑐𝑐, the “Control 
mixer” block returns the PWM for each rotor, using relations (4). 
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 (4) 

The gyroscope outputs ϕ, θ, ψ will also be read by our 
Software interface from Fig. 2, explained in the next section. 

 

IV. SOFTWARE INTERFACE AND POSITION DETECTION 

A. Matlab to Crazyflie 2.0 Connection 
The data connection with the nanoquadcopter is done 

through a 2.4 GHz Crazyradio PA dongle Fig. 2, containing a 
nRF24LU1 microcontroller and a 20 dBm amplifier that allows 
communication on a distance of up to 1 Km [15]. Software 
resources are represented by the libraries [16] developed by the 

 
Fig. 5 Internal structure of the Crazyflie 2.0 quadcopter 
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Crazyflie manufacturers which are written in the Python and 
Matlab programming language. 

In order to communicate with the nanoquadcopter, a Python 
module was implemented. This module scans all devices at the 
time of execution, resulting in a list of possible candidates to 
connect with. 

The send/receive procedure is done using a Matlab module by 
embedding four values: roll ϕc (the angle of rotation around the 
x axis, which takes values between -180 and 180 degrees), pitch 
θc (the rotation angle of the y axis, with the values between -90 
and 90 degrees), yaw ψc (the rotation angle around the z axis, 
which can take the values between -180 and 180 degrees) and 
thrust 𝛺𝛺𝑐𝑐 (with range discussed in Section III.B). Moreover, this 
module is linked through a UDP socket with the communication 
Python module. 

B. Position Detection 
In this subsection we discuss about the third step in the 

supervision architecture depicted in Fig.2. The main goal is to 
detect the position of the nanoquadcopter. This task is 
completed by using the data acquired with a Kinect V2 RGB-D 
sensor [6]. 

The environment is analysed using the colour image and the 
depth image. The obstacles distribution is obtained from the 
colour image, while the 3D mapping is directly linked to the 
depth image and the Kinect internal parameters. The colour 
image is calibrated with the depth image, which allows direct 
access to both colour information and depth data. 

The following procedure was used for detecting the 
nanoquadcopter position: (1) an analysis is carried in the 
YCbCr space, considering a specific colour marker; (2) the 
resulting 2D position is mapped into the depth data, which 
combined with the intrinsic parameters leads to the 3D position. 
Both the nanoquacopters position and the positions of the 
obstacles are referred to GiF using equation (5): 

 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑅𝑅180
𝑦𝑦 × 𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 + 𝑇𝑇2.8

𝑍𝑍 , (5) 

where R is the rotation matrix (3𝑥𝑥3)  by axis y with 180 degrees, 
𝑇𝑇2.8
𝑍𝑍   is the translation vector (3𝑥𝑥1) by axis z with 2.8 meters). 

GiF is placed at the end of the z axis of the Kinect. 
The delay times introduced by routines mentioned in 

Section IV will be analysed in the next section, together with 
model validation and preliminary steps towards real-time 
experiments. 

 

V. SIMULATIONS AND EXPERIMENTAL RESULTS 

A. Open-loop experiments 
For validating the model from Section III, we have 

simulated the structure from Fig. 5 in Matlab and we compared 
the results with the behaviour of the Crazyflie 2.0 quadcopter. 
These are open-loop experiments, since they do not use the 
feedbacks and the control block from Fig. 2. 

We have applied the step input from (6) to both the structure 
from Fig. 5 (simulations performed in Matlab – Simulink) and 
to the Crazyflie 2.0 evolving in the environment from Fig. 3. 

The angle inputs were kept to 0. The hovering thrust (for which 
𝑧̇𝑧 = 0) is 41950, so the thrust from (6) should first force the 
lifting of the quadcopter (until 0.7 s), then the z position should 
increase some more from inertia, and finally it should decrease. 

 𝛺𝛺𝑐𝑐 =  �55000,   𝑡𝑡 ∈ [0, 0.7]𝑠𝑠
35000,   𝑡𝑡 > 0.7 𝑠𝑠  (6) 

The simulated and the real-time behaviour of z state are 
given in Fig. 6. As expected, the simulated behaviour has an 
inflexion point at t = 0.7 s, while the experimental results are 
slightly with respect to obtained values versus time. Moreover, 
in numerical simulation the x and y states remained 0 (initial 
values), but in real time experiments the Crazyflie 2.0 has a 
fairly strong drift and the obtained x exceeded 1 m in some tests. 

This fact shows the necessity for a closed-loop stabilizing 
control, as in the proposed architecture from Fig. 2. However, 
this is not captured in the current paper, because currently the 
delay introduced by image processing from block (iii) (Fig. 2) 
is around 0.067 s, which proves to be quite high for this fast 
system. However, using only depth data from the Kinect sensor 
could reduce the delay of the image processing block to 
approximately 0.03 s. 

On the other hand, the delays introduced by sending 
commands and reading angles to / from Crazyflie are very 

 
Fig. 6 Evolution of z position: numerical simulation (black curve) and 

experimental results (blue points) 

 
Fig. 7 Delays introduced by block (ii) from Fig. 2 
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small, about 10-3 s and 10-2 s, respectively. If one intends to also 
read the battery level and the current PWMs of each motor, the 
delay is larger (around 0.1 s), but such readings are not to be 
done often. Fig. 7 shows the introduced delays for 
communicating with the quadcopter, on 1000 send and receive 
function calls (trials). 

B. Closed-loop simulation 

In Matlab we have performed some preliminary tests 
regarding the drone stable hovering. For this, we have replaced 
block (iv) form Fig. 2 with a PID controller, with parameters 
tuned around the values returned by Ziegler-Nichols method. 
Fig. 8 shows the results obtained when imposing constant 
reference values x, y, z = 1 m, ϕ, θ = 0, ψ = 60 deg. The results 
from Fig. 8 show slightly better performances when compared 
to similar tests reported in [12]. 

 

VI. CONCLUSIONS 
This paper includes our initial steps towards obtaining a 

real-time control architecture for supervised flight of an indoor 
nanoquadcopter. After presenting the intended structure, we 
have presented the results concerning three of the main blocks. 
First, the model and the internal structure of the Crazyflie 2.0 
quadcopter are detailed. Then, the communication routines for 
sending and receiving information to/from the quadcopter and 
from the Kinect sensor are mentioned. All the developed 
functions can be called from Matlab environment, thus ensuring 
a good support for further including various path generation and 
trajectory following techniques. Numerical simulations were 
compared with open-loop results from experimental platform, 
and closed-loop simulations are mentioned. Time delays 
introduced by communication and quadcopter detection are also 

investigated. Further work is directed to reducing the position 
detection delays and to implementing control algorithms for 
obtaining a stable hovering and then the flight along a 
predefined trajectory. 
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Fig. 8 Simulated results for reaching a stable hovering at z = 1 m 
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