
Stable hovering architecture for nanoquadcopter
applications in indoor environments

Sofia Huștiu, Marian Lupașcu, Ștefan Popescu, Adrian Burlacu, Marius Kloetzer
Dept. of Automatic Control and Applied Informatics

“Gheorghe Asachi” Technical University of Iași
Iași, Romania

{hustiu.sofia, lupascu.marian, popescu.stefan, aburlacu, kmarius}@ac.tuiasi.ro

Abstract— This research aims at designing a stable hovering
architecture for small size quadcopters in indoor environments.
The chosen system is a Crazyflie 2.0 nanoquadcopter. First, using
the Newton-Euler equations, the dynamic nonlinear model is built.
This model allows for simulations and feedback controller design.
Second, a 3D indoor environment was created for real-time
applications. A Kinect Sensor is considered for real time position
measurements, at the same time with obtaining orientations from
the gyroscope of the Crazyflie. For practical implementation, a
combination between Python and Matlab facilities was considered.
The first prototype of the proposed architecture was evaluated for
different scenarios and the experimental results are detailed and
commented.

Keywords— nanoquadcopter; modelling; indoor application.

I. INTRODUCTION
Quadcopters are popular choices for robotic platforms, due

to their agility, simplicity, and wide range of applications. Their
first appearance was in the military field [1]. The scope of the
quadcopter technology has changed over the years. Therefore,
they start to be used in daily application as: delivery services,
ground mapping, photography and movie making [2]. A
quadcopter is a four rotor helicopter [3]. The particularity of the
quadcopter is given by the fact that two opposite propellers spin
clockwise, and the other two spin counter clockwise. The study
of the quadcopter control problem is interesting because of its
complexity: six degrees of freedom [4, 5]. Most commonly used
quadcopters are big enough to carry cameras or packages to
deliver [6], but they are expensive and require a large space to
operate safely.

One of the current challenges is to integrate quadcopters in
applications for indoor environments. The reduced space and
lack of very important measurement such as GPS increases the
complexity of having a stable hovering. For this research, we
decided to use small size quadcopters and design a stable
hovering architecture for indoor applications.

The chosen type of quadcopters is Crazyflie 2.0 [7-9]. Due
to small size, it cannot carry any camera or other sensors besides
the IMU and gyroscope. In order to recover the position a RGB-
D sensor was included in the indoor environment. Thus, the bias
between the internal IMU data and the external position
measurements generate the input error needed to be minimized.

The paper begins with problem formulation, where an
overview of the system is given. Next, the mathematical model
for the nanoquadcopter dynamics is presented. The nonlinear
behavior is modeled using the Newton-Euler approach. Also,

internal structure of the nanoquadcopter and physical
constraints are evaluated. For practical applications we present
details about the protocol communication between PC and
Crazyflie 2.0, by using Python and Matlab facilities. The
constructed model and the developed communication routines
will be used for completing a stabilizing architecture, and the
current experimental results are discussed in section V. In the
last section we address conclusions and future work.

II. PROBLEM FORMULATION
This research investigates the problem of automatically

controlling the flight of a Crazyflie 2.0 quadcopter, such that it
can follow a desired reference trajectory.

The Crazyflie 2.0 is a nanoquadcopter suitable for indoor
environments [7]. It weighs less than 30 grams (including
battery) and its diagonal size is less than 10 centimeters. The
quadcopter has a 32-bit, 168 MHz ARM microcontroller, an
internal gyroscope, and it communicates with a PC over the
Crazyradio PA, which is a 2.4 GHz USB dongle that transmits
up to two megabits per second in 32-byte packets. Fig. 1
presents the kit containing a Crazyflie 2.0 quadcopter and a
Crazyradio PA.

For obtaining a supervised indoor flight of this quadcopter
we propose the architecture from Fig. 2, which is comprised of
the following main parts:

(i) The quadcopter (plant to be controlled);
(ii) Software interface with the quadcopter, consisting in

developing functions for sending commands and reading
states;

(iii) Position feedback, i.e. indoor localization, solved by
processing images with depth information gathered by a
Kinect sensor [10];

Fig. 1 Crazyflie 2.0 quadcopter (left) and Crazyradio PA

communication dongle (right)

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 659

(iv) Algorithm ensuring the stable flight while following a
predefined reference trajectory.

This paper studies items (i), (ii) and (iii) from above. More
specifically, for item (i) we discuss the quadcopter
mathematical model and internal structure (Section III), which
is further used for performing simulations and for finding
suitable control laws in step (iv). For item (ii) we develop
functions for establishing connection with Crazyflie 2.0, for
sending commands and for reading important states – Section
IV.A. Item (iii) includes functions for reading images and depth
information from the Kinnect sensor and for detecting the
quadcopter position in the workspace – Section IV.B. It worth
mentioning at this point that the software routines for both steps
(ii) and (iii) are created with the purpose of calling them from
the Matlab environment. This is because many path planning
and trajectory following algorithms (embedded in step (iv)) are
developed under Matlab, and thus we intend to obtain user-
friendly routines for Crazyflie 2.0. Step (iv) is left for future
work, and thus this paper details the proposed architecture and
workspace for Crazyflie 2.0 real-time experiments.

The workspace in which the quadcopter evolves is shown in
Fig. 3, being constructed such that it allows the usage of the
architecture from Fig. 2. Starting from a platform that was
previously used for controlling planar mobile robots [11], we
have added a Kinect sensor and a safety net, while 3D obstacles
for further tests in step (iv) can be represented by polystyrene
shapes. The working environment footprint is about 4 x 2.5 m,
and the height is almost 2.8 m. From this height, the Kinect
sensor can cover slightly more than the whole footprint, and an
area of about 2.1 x 1.3 m at height of 1 m.

III. CRAZYFLIE 2.0 MODEL AND STRUCTURE
Subsection III.A details the mathematical model for the

Crazyflie 2.0, while subsection III.B presents its internal
structure yielding the available inputs and outputs. The
information from this section summarizes important data from
the model development and structure given in [12].

A. Dynamic Model for Crazyflie 2.0
To obtain the mathematical model, we consider the

following hypothesis [13]:
• The structure is a rigid body;
• The structure is symmetrical;

• The Center of Gravity (CoG) is in the middle of the
quadcopter;

• The mass is constant.
It is also necessary to define two frames, as in Fig. 4: the

body fixed frame in configuration “X”, which is default for
Crazyflie 2.0, and the inertial frame, denoted as Global inertial
Frame (GiF), related to the Earth. Initially, the Crazyflie’s body
fixed frame is deployed in the origin of the GiF.

The following state variables of the model are chosen, all
being expressed in the inertial frame: x, y, z denote the position
of CoG, u, v, w are the linear velocities of CoG along the three
axes, ϕ, θ, ψ are the roll, pitch, and yaw angles, respectively,
and p, q, r are the angular velocities of the quadcopter.

Based on Newton-Euler equations and on the mentioned
hypothesis, one can obtain the nonlinear model of the Crazyflie
2.0 quadcopter given by (1). For additional construction details
see [12], but bear in mind that the model herein corrects some
small errors. Also, we mention that it is possible to derive
different quadcopter models as in [8,9], but this work will further
focus on model (1).

Fig. 2 Proposed architecture for supervised Crazyflie 2.0 experiments

Fig. 3 Working environment

Fig. 4 Inertial frame (left) and body frame (right)

660

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
𝜓̇𝜓
𝜃̇𝜃
𝜙̇𝜙
𝑢̇𝑢
𝑣̇𝑣
𝑤̇𝑤
𝑟̇𝑟
𝑞̇𝑞
𝑝̇𝑝 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑤𝑤�𝑠𝑠𝜓𝜓𝑠𝑠𝜙𝜙 + 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃� − 𝑣𝑣�𝑠𝑠𝜓𝜓𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜓𝜓𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃� + 𝑢𝑢 × 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃
𝑣𝑣�𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 + 𝑠𝑠𝜓𝜓𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃� − 𝑤𝑤�𝑐𝑐𝜓𝜓𝑠𝑠𝜙𝜙 − 𝑠𝑠𝜓𝜓𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃� + 𝑢𝑢 × 𝑠𝑠𝜓𝜓𝑐𝑐𝜃𝜃

𝑤𝑤 × 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 − 𝑢𝑢 × 𝑠𝑠𝜃𝜃 + 𝑣𝑣 × 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃
𝑝𝑝 + 𝑟𝑟 × 𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃 + 𝑞𝑞 × 𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃

𝑞𝑞 × 𝑐𝑐𝜙𝜙 − 𝑟𝑟 × 𝑠𝑠𝜙𝜙
𝑟𝑟 𝑐𝑐𝜙𝜙
𝑐𝑐𝜃𝜃

+ 𝑞𝑞 𝑠𝑠𝜙𝜙
𝑐𝑐𝜃𝜃

𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑞𝑞 + 𝑔𝑔 × 𝑠𝑠𝜃𝜃
𝑝𝑝𝑝𝑝 − 𝑟𝑟𝑟𝑟 − 𝑔𝑔 × 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃

𝑞𝑞𝑞𝑞 − 𝑝𝑝𝑝𝑝 + 𝑈𝑈1
𝑚𝑚
− 𝑔𝑔 × 𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙

𝑈𝑈2+𝑝𝑝𝑝𝑝(𝐼𝐼𝑥𝑥𝑥𝑥− 𝐼𝐼𝑦𝑦𝑦𝑦)
𝐼𝐼𝑧𝑧𝑧𝑧

𝑈𝑈3+𝑝𝑝𝑝𝑝(𝐼𝐼𝑧𝑧𝑧𝑧− 𝐼𝐼𝑥𝑥𝑥𝑥)
𝐼𝐼𝑦𝑦𝑦𝑦

𝑈𝑈4+𝑝𝑝𝑝𝑝(𝐼𝐼𝑧𝑧𝑧𝑧− 𝐼𝐼𝑦𝑦𝑦𝑦)
𝐼𝐼𝑥𝑥𝑥𝑥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (1)

In order to simplify notations, model (1) uses notations 𝑠𝑠𝑥𝑥 =
sin(x), 𝑐𝑐𝑥𝑥= cos(x) and 𝑡𝑡𝑥𝑥 = tg(x). Furthermore, m is the
Crazyflie’s mass, g denotes the gravitational acceleration, and
Ixx, Iyy, Izz are the moments of inertia around x, y, z axis, with
numerical values given in Table I.

Table I. Crazyflie 2.0 parameters

Parameter Value
m 0.0299 [Kg]
g 9.81 [m/s2]

𝐼𝐼𝑥𝑥𝑥𝑥 = 𝐼𝐼𝑦𝑦𝑦𝑦 1.395 x 10−5 [Kg x m2]
𝐼𝐼𝑧𝑧𝑧𝑧 2.173 x 10−5 [Kg x m2]
𝐶𝐶𝑇𝑇 3.1582 x 10−10 [N/rpm2]
𝐶𝐶𝐷𝐷 7.9379 x 10−12 [Nm/rpm2]
d 0.03973 [m]

The generic inputs for the quadcopter are the total thrust,
denoted by U1 in (1), and roll, pitch, yaw moments, denoted by
U2, U3, U4, respectively. Equation (2) links these inputs to the
speeds of the four motors [14]. In (2), 𝜔𝜔𝑖𝑖, 𝑖𝑖 = 1, … , 4 are the
rotation speeds of the four DC motors, in rpm (revolutions per
minute), 𝐶𝐶𝐷𝐷 is the drag coefficient, 𝐶𝐶𝑇𝑇 is the thrust coefficient ,
and the quadcopter’s arm length is denoted by d, with numerical
values from Table I.

𝑈𝑈1 = 𝐶𝐶𝑇𝑇(𝜔𝜔12 + 𝜔𝜔2
2 + 𝜔𝜔3

2 + 𝜔𝜔42)
𝑈𝑈2 = 𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 − 𝜔𝜔2

2 + 𝜔𝜔3
2 + 𝜔𝜔42)

𝑈𝑈3 = 𝑑𝑑𝑑𝑑𝑇𝑇√2(−𝜔𝜔12 + 𝜔𝜔2
2 + 𝜔𝜔3

2 − 𝜔𝜔42)
𝑈𝑈4 = 𝐶𝐶𝐷𝐷(−𝜔𝜔12 + 𝜔𝜔2

2 − 𝜔𝜔3
2 + 𝜔𝜔42)

 (2)

B. Internal Structure of Crazyflie 2.0
The Crazyflie 2.0 quadcopter includes some internal

controllers that cannot be overridden by the user. Thus, the
inputs of the dynamic model (1), (2) cannot be directly send to
Crazyflie 2.0, and instead of those, the user can impose the
following signals:

• Command thrust 𝛺𝛺𝑐𝑐;
• Command (desired) roll and pitch angles: ϕc and θc,

respectively, expressed in degrees;

• Command yaw rate 𝜓𝜓𝑐̇𝑐, in degrees per second.
The internal structure of the Crazyflie 2.0 is given in Fig. 5,

containing the internal controllers and the plant model.
Command thrust 𝛺𝛺𝑐𝑐 is given as a 16 bit number, ranging from 0
to 65535. Also, by exploring the Crazyflie’s 2.0 firmware, we
observe that the internal signals for driving the quadcopter
(outputs of the “Control mixer” block) are PWM signals for each
motor, rather than rpm values 𝜔𝜔𝑖𝑖, 𝑖𝑖 = 1, … , 4. The translation
from PWM to RPM is given in (3).

 𝑅𝑅𝑅𝑅𝑅𝑅 = 0.2685 × 𝑃𝑃𝑃𝑃𝑃𝑃 + 4070.3 (3)

Thus, the block “Plant” from Fig. 5 basically corresponds to
translation (3) and dynamic model (1), (2). Additionally, the
quadcopter has a gyroscope sensor that returns the current values
of ϕ, θ, ψ states and ensures internal feedback for the next
described controllers that came with the stock firmware of the
Crazyflie 2.0. The “Attitude controller” is a PI controller that
outputs the desired roll and pitch angular velocities 𝜙𝜙𝑐̇𝑐 and 𝜃𝜃𝑐̇𝑐,
based on send commands and on actual feedback ϕ and θ. The
“Rate controller” further computes the necessary angular
variations Δϕ, Δθ, Δψ to create the angular momentum. The
outputs from the rate controller are used as inputs in the last
onboard controller. Along with the thrust 𝛺𝛺𝑐𝑐, the “Control
mixer” block returns the PWM for each rotor, using relations (4).

⎩
⎪⎪
⎨

⎪⎪
⎧𝑃𝑃𝑃𝑃𝑃𝑃1 = 𝛺𝛺𝑐𝑐 −

𝛥𝛥𝜙𝜙
2
− 𝛥𝛥𝜃𝜃

2
− 𝛥𝛥𝜓𝜓

𝑃𝑃𝑃𝑃𝑃𝑃2 = 𝛺𝛺𝑐𝑐 + 𝛥𝛥𝜙𝜙
2
− 𝛥𝛥𝜃𝜃

2
+ 𝛥𝛥𝜓𝜓

𝑃𝑃𝑃𝑃𝑃𝑃3 = 𝛺𝛺𝑐𝑐 + 𝛥𝛥𝜙𝜙
2

+ 𝛥𝛥𝜃𝜃
2
− 𝛥𝛥𝜓𝜓

𝑃𝑃𝑃𝑃𝑃𝑃4 = 𝛺𝛺𝑐𝑐 −
𝛥𝛥𝜙𝜙
2

+ 𝛥𝛥𝜃𝜃
2

+ 𝛥𝛥𝜓𝜓

 (4)

The gyroscope outputs ϕ, θ, ψ will also be read by our
Software interface from Fig. 2, explained in the next section.

IV. SOFTWARE INTERFACE AND POSITION DETECTION

A. Matlab to Crazyflie 2.0 Connection
The data connection with the nanoquadcopter is done

through a 2.4 GHz Crazyradio PA dongle Fig. 2, containing a
nRF24LU1 microcontroller and a 20 dBm amplifier that allows
communication on a distance of up to 1 Km [15]. Software
resources are represented by the libraries [16] developed by the

Fig. 5 Internal structure of the Crazyflie 2.0 quadcopter

661

Crazyflie manufacturers which are written in the Python and
Matlab programming language.

In order to communicate with the nanoquadcopter, a Python
module was implemented. This module scans all devices at the
time of execution, resulting in a list of possible candidates to
connect with.

The send/receive procedure is done using a Matlab module by
embedding four values: roll ϕc (the angle of rotation around the
x axis, which takes values between -180 and 180 degrees), pitch
θc (the rotation angle of the y axis, with the values between -90
and 90 degrees), yaw ψc (the rotation angle around the z axis,
which can take the values between -180 and 180 degrees) and
thrust 𝛺𝛺𝑐𝑐 (with range discussed in Section III.B). Moreover, this
module is linked through a UDP socket with the communication
Python module.

B. Position Detection
In this subsection we discuss about the third step in the

supervision architecture depicted in Fig.2. The main goal is to
detect the position of the nanoquadcopter. This task is
completed by using the data acquired with a Kinect V2 RGB-D
sensor [6].

The environment is analysed using the colour image and the
depth image. The obstacles distribution is obtained from the
colour image, while the 3D mapping is directly linked to the
depth image and the Kinect internal parameters. The colour
image is calibrated with the depth image, which allows direct
access to both colour information and depth data.

The following procedure was used for detecting the
nanoquadcopter position: (1) an analysis is carried in the
YCbCr space, considering a specific colour marker; (2) the
resulting 2D position is mapped into the depth data, which
combined with the intrinsic parameters leads to the 3D position.
Both the nanoquacopters position and the positions of the
obstacles are referred to GiF using equation (5):

 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑅𝑅180
𝑦𝑦 × 𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 + 𝑇𝑇2.8

𝑍𝑍 , (5)

where R is the rotation matrix (3𝑥𝑥3) by axis y with 180 degrees,
𝑇𝑇2.8
𝑍𝑍 is the translation vector (3𝑥𝑥1) by axis z with 2.8 meters).

GiF is placed at the end of the z axis of the Kinect.
The delay times introduced by routines mentioned in

Section IV will be analysed in the next section, together with
model validation and preliminary steps towards real-time
experiments.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Open-loop experiments
For validating the model from Section III, we have

simulated the structure from Fig. 5 in Matlab and we compared
the results with the behaviour of the Crazyflie 2.0 quadcopter.
These are open-loop experiments, since they do not use the
feedbacks and the control block from Fig. 2.

We have applied the step input from (6) to both the structure
from Fig. 5 (simulations performed in Matlab – Simulink) and
to the Crazyflie 2.0 evolving in the environment from Fig. 3.

The angle inputs were kept to 0. The hovering thrust (for which
𝑧̇𝑧 = 0) is 41950, so the thrust from (6) should first force the
lifting of the quadcopter (until 0.7 s), then the z position should
increase some more from inertia, and finally it should decrease.

 𝛺𝛺𝑐𝑐 = �55000, 𝑡𝑡 ∈ [0, 0.7]𝑠𝑠
35000, 𝑡𝑡 > 0.7 𝑠𝑠 (6)

The simulated and the real-time behaviour of z state are
given in Fig. 6. As expected, the simulated behaviour has an
inflexion point at t = 0.7 s, while the experimental results are
slightly with respect to obtained values versus time. Moreover,
in numerical simulation the x and y states remained 0 (initial
values), but in real time experiments the Crazyflie 2.0 has a
fairly strong drift and the obtained x exceeded 1 m in some tests.

This fact shows the necessity for a closed-loop stabilizing
control, as in the proposed architecture from Fig. 2. However,
this is not captured in the current paper, because currently the
delay introduced by image processing from block (iii) (Fig. 2)
is around 0.067 s, which proves to be quite high for this fast
system. However, using only depth data from the Kinect sensor
could reduce the delay of the image processing block to
approximately 0.03 s.

On the other hand, the delays introduced by sending
commands and reading angles to / from Crazyflie are very

Fig. 6 Evolution of z position: numerical simulation (black curve) and

experimental results (blue points)

Fig. 7 Delays introduced by block (ii) from Fig. 2

662

small, about 10-3 s and 10-2 s, respectively. If one intends to also
read the battery level and the current PWMs of each motor, the
delay is larger (around 0.1 s), but such readings are not to be
done often. Fig. 7 shows the introduced delays for
communicating with the quadcopter, on 1000 send and receive
function calls (trials).

B. Closed-loop simulation

In Matlab we have performed some preliminary tests
regarding the drone stable hovering. For this, we have replaced
block (iv) form Fig. 2 with a PID controller, with parameters
tuned around the values returned by Ziegler-Nichols method.
Fig. 8 shows the results obtained when imposing constant
reference values x, y, z = 1 m, ϕ, θ = 0, ψ = 60 deg. The results
from Fig. 8 show slightly better performances when compared
to similar tests reported in [12].

VI. CONCLUSIONS
This paper includes our initial steps towards obtaining a

real-time control architecture for supervised flight of an indoor
nanoquadcopter. After presenting the intended structure, we
have presented the results concerning three of the main blocks.
First, the model and the internal structure of the Crazyflie 2.0
quadcopter are detailed. Then, the communication routines for
sending and receiving information to/from the quadcopter and
from the Kinect sensor are mentioned. All the developed
functions can be called from Matlab environment, thus ensuring
a good support for further including various path generation and
trajectory following techniques. Numerical simulations were
compared with open-loop results from experimental platform,
and closed-loop simulations are mentioned. Time delays
introduced by communication and quadcopter detection are also

investigated. Further work is directed to reducing the position
detection delays and to implementing control algorithms for
obtaining a stable hovering and then the flight along a
predefined trajectory.

ACKNOWLEDGMENT
This work was partially supported by a grant of Romanian

Ministry of Research and Innovation, CNCS-UEFISCDI
project PN-III-P1-1.1-TE-2016-0737.

REFERENCES
[1] M. Bilal Kadri, N. Aziz Jumani, and Z. Pirwani, “Dynamical modelling

and control of quadrotor”, Transactions on Machine Design, 4(2), 2016.
[2] J. Preiss, Wolfgang Honig, G. Sukhatme, and N. Ayanian, “Crazyswarm:

a large nano-quadcopter swarm”, IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[3] T. Luukkonen, “Modelling and control of quadcopter”, Aalto University,
Independent research project in applied mathematics, Espoo, 2011.

[4] F. Sabatino, “Quadrotor control: modelling, nonlinear control design, and
simulation”, MSc. Thesis XR-EE-RT 2015:XXX, KTH, 2015.

[5] D. Gheorghita, I. Vintu, L. Mirea, and C. Braescu, “Quadcopter control
system modelling and implementation”, 19th International Conference on
System Theory, Control and Computing (ICSTCC), 2015.

[6] Z. Tahir, M. Jamil, S. A. Liaqat, L. Mubarak, W. Tahir and S. O. Gilani,
”State space system modelling of a quad copter UAV”, Indian Journal of
Science and Technology, 9(27), pp. 1-5 , 2016.

[7] Crazyflie 2.0 documentation, available at:
https://wiki.bitcraze.io/projects:crazyflie2:index, 2018.

[8] B. Landry, “Planning and control for quadrotor flight through cluttered
environments”, MSc. Thesis, MIT, 2014.

[9] M. Greiff, “Modelling and control of the crazyflie quadrotor for
aggressive and autonomous flight by optical flow driven state estimation”,
MSc. Thesis, Lund University, 2017.

[10] Kinect for Windows SDK, available at: https://docs.microsoft.com/en-
us/previous-versions/windows/kinect/dn799271(v=ieb.10), 2018.

[11] .M. Kloetzer, S. Magdici, and A. Burlacu, “Experimental platform and
Matlab toolbox for planning mobile robots”, 16th International
Conference on System Theory, Control and Computing (ICSTCC), 2012.

[12] C. Luis and J. Le Ny. “Design of a trajectory tracking controller for a
nanoquadcopter”, Technical report, Mobile Robotics and Autonomous
Systems Laboratory, Polytechnique Montreal, 2016.

[13] A.A.J. Lefeber. “Controlling of a single drone. Hovering the drone during
flight modes.” Technical Report TU/E Eindhoven, Department of
Mechanical Engineering, 2015.

[14] C. Balas, “Modelling and linear control of a quadrotor”, MSc. Thesis
Cranfield University, 2007.

[15] Crazyradio PA, available at: https://www.bitcraze.io/crazyradio-pa, 2018.
[16] Library imported for application development, available at:

https://github.com/bitcraze/crazyflie-lib-python, 2018.

Fig. 8 Simulated results for reaching a stable hovering at z = 1 m

663

